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Freezing of hard spheres within the modified weighted density approximation

C. F. Tejero
Facultad de Ciencias Bicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
(Received 21 October 1996

The real space version of the modified weighted density approximation is investigated in order to determine
the effective liquid density that is used to represent a face centered cubic hard-sphere solid. It is shown that
above a threshold average density of the solid the theory is unable to predict the existence of the crystal phase.
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In the density functional theory of freezid] the Helm-  whereV is the volume,(p) = Bf{p), andc(|r|;p) is the
holtz free energy of a solid;[ p], is a unique functional of direct correlation function of the fluid. As usual, the prime
the local density,p(r), which can be split into ideal and denotes diferentiation with respect to the argument.
excess contributionsi[p]=F;q[p]+Felp]. The equilib- Five years ago, Kyrlidis and Browf®] made a compari-
rium local density of the solid is obtained by minimizing son between the MWDA and the GELA for the face centered
F[p] at constant average density but, since oRjyfp] is  cubic (fcc) hard-sphere solid at low densities. They found

known exactly as a functional of the local density, anythat the MWDA can possess two solutions forThe reason
implementation of density functional theory requires somefor this unphysical multiplicity of solutions for the effective
explicit approximation for=¢,[ p]. In the modified weighted  liquid density was not investigated by these authors but in-
density approximatiotMWDA) of Denton and Ashcroft2]  terpreted by them as a serious defect of the theory. Very
and in the generalized effective liquid approximationrecently Likos and Ashcroff5] concluded that the solution
(GELA) of Lutsko and Baug3] the excess free energy per of the MWDA, when it exists, is always unique if proper
particle of the solide,f p]=Fe{ p]/N, with N the number of 5c6ynt is taken of the boundary conditions tpahas to
particles, is mapped onto that of an effective uniform fluid, gatisfy for small localizations of the particles in the solid. In
i.e., fel pl=Tedp). Herep=p[p] denotes the effective lig- particular, they showed that the so-called second branch of
uid density which is used to represent the solid &g¢lp) is  solutions of the MWDA must be discarded since, in the uni-
the excess free energy per particle of the corresponding unform fluid limit, the effective liquid packing fraction of this
form fluid. Both approximations differ in the way the effec- pranch 7= wpa®/6, with o the hard-sphere diameter, ap-
tive liquid density is found. In the GELAB is the unique proaches unity. This value is greater than the packing frac-
solution of a differential equatiof8], while in the MWDA tion at close packing of the fcc crystak(/2/6=0.7405) and

p is defined as a doubly weighted average of the local denwould therefore correspond to an unphysical flux even

sity of the solid with respect to a weight functi¢f]: solid) phase since hard spheres cannot completely fill space
without overlapping. In this paper we apply the real space

~ 1 . A version of the MWDA[6] to a fcc hard-sphere solid and
P= Nj dr P(r)f dr’p(r'w(|r=r'[;p), (1) determine the branches of solutions for the effective liquid
density. We investigate low and high density solids, finding
wherew(|r—r'|;p) is the weight function. important qualitative differences.

To ensure that the MWDA becomes exact in the limit of a AdOpting the Percus-YevickPY) approximation to de-
uniform systemp(r)—p;, with p, denoting the density of scribe the fluid phase and parametrizing the local density of
the uniform system, the weight function must satisfy the northe solid as a sum of identical normalized Gaussians centered
malization condition around the lattice sites, the effective liquid densityn the

real space version of the MWDJ6] is given, by inserting

, , Eqg. (3) in Eq. (1), by one of the solutions of the equation
| drwde=rion-1. @

where we have taken into account that-p, when 2M(1-— 7)°+3} _
p(r)—p;. (1-7)8 (1-7n)*

A unique specification of the weight function is obtained
by requiring that the second functional derivative of the ex-
cess free energy functionat BF.J p], with B the inverse
temperature, is, in the uniform fluid limit, the direct correla- 4
tion function of the uniform fluid, yielding

R 3. R
(1+277)250—§71(2+ 7)%S;

1. . . .
+5n(1+27)°S3— n{(1-7)*+ 9},

1 1 where n= 36, with p the average density of the solid,
W(|r|?P|):—m cripn+ye (e, @ g (nzoair%g p g y
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line) [see Eq(5)] vs the localization parameter* for a fcc hard-

- " _ line) [see Eq.(5)] for localization parameters Osla* <100 for a
sphere solid of packing fractiop=0.5.

fcc hard-sphere solid of packing fractiop=0.7.

_ . *\ V2 1 41 this quartic equation for two representative casgs:0.5,
Sh=Sn(a”,7)= 20 ; X_Jo dx x° corresponding to the low density region already discussed in
[2], and »=0.7, i.e., to an average solid density near close
X[e” o* (x=x))%12_ o= “*<X+Xj>2/2]_ (5)  packing[6,8]. The former case corresponds to a metastable

solid near the first-order fluid-solid transition whereas the

In Eq. (5) a* = ao? is the localization or order parameter, latter is a representative example of a high density solid.
a being the inverse width of the Gaussians, the sum runs INFig. 1 we represerg, S;, andS,; for a fec hard-sphere
[7]. As the integrals in E5) can be performed analytically, that the curves are smooth functions @t which increase
the determination ofS,, S;, and S,, for fixed » and «*,  When decreasing the localization parameter and reach in the
reduces to the evaluation of three lattice sums. We havéniform fluid limit, a* —0, plateaus given by
found that, for a fcc crystal, converged sums with a relative .
error smaller than 10° are obtained fora*=0.1 and So—87,  $—-6n, S—4n (a"—0). (6

0.1= =0.73 with 300 lattice shells. T o .
~ Within this range of localization parameters the quartic equa-
Note moreover that, whem# 1, Eq. (4) can be further oy has two real roots which are plotted in Fig. 2. Both the
reduced to a quartic equation®+azn®+a,n?+a;n+a;  upper and lower branches are decreasing functiona*of
=0 with real coefficients a9=5/2, a,=-4-57  gpproaching, as* —0, to 7—1 and 7— 7, respectively.
12535, +S55/4, a,=6+7+25-35,+S;, and a3=  The overall picture encountered in this case is therefore the
—3-7/2-35,/4+ S;. Here we consider the real roots of same as in Fig. 1 in the paper by Kyrlidis and Brown. Note,
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FIG. 2. Upper and lower branches of E¢g) vs the localization FIG. 4. Sy (continuous ling S; (dashed ling and S; (dotted

parametera* for a fcc hard-sphere solid of packing fraction line) [see(5)] for localization parameters Osla* <4000 for a fcc
n=0.5. hard-sphere solid of packing fractiop=0.7.
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FIG. 5. Smalle* branches of Eq4) vs the localization param- FIG. 7. Upper and lower branches of Ed) vs the localization

etera* for a fcc hard-sphere solid of packing fractigr=0.7. The  parametera® for a fcc hard-sphere solid of packing fraction
cross denotes the location of the double real rast=33.985 7n=0.652.
7=0.761.

In Figs. 3 and 4 we represe, S;, and S5 for a fcc
however, that, as)— 1, we have to be careful with the sin- hard-sphere solid —of packing fractiony=0.7  for
gularity of the PY approximation and take instead the uni-0-1= a* <4000. Note that the curves are again smooth func-

form fluid limit (6) in Eq. (4) to find tions of the order_ parameter apprpaching the lifGix er
small«* values(Fig. 3). By increasinga* the curves first
2;7{(1_ ;7)2+3} 1 A A increase, then reach a maximum to finally decrease at very
= = —I27{(1—7)?+3}(1—7)] large localizations(Fig. 4). The real roots of the quartic
(1-9)° (1-n)* equation are shown in Figs. 5 and 6. For sméil-values

there are two branches which converge, @$—0, to

n—1 andy—0.7, respectivelyFig. 5. As explained above,
the upper branch must be discarded by taking proper account
of the uniform fluid limit (7). An important difference with

fih iaht f : d pointed by Lik d Ashcrof respect to the low density case is that now the lower branch
of the weight function and pointed out by Likos and AShCroftj, e ases withe*, the upper and lower branches approach-

[5], which leads to a unique identification of the two in - : R
! . . iy g each other when increasing localization. At
branches of solutions of the MWDA. With this identification, «_ 33 gg5 the quartic equation has a double real root

the lower branch yields a minimum of the solid free energy-~ —0.761 and for | localizati th i i .
at a¥, . =72.5 corresponding to an effective liquid packing 7 and for farger localizations the roots are afl imagi-

(a*—0), (7)

with a unique real rooty= 7. This condition is an essential
constraint of the MWDA[ 2], required by the normalization

LA nary.
fraction =0.291[6].
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FIG. 6. Largea* branches of Eq4) vs the localization param- FIG. 8. Smalle* and largee* branches of Eq(4) vs the lo-

etera* for a fcc hard-sphere solid of packing fractigrr=0.7. The  calization parametex* for a fcc hard-sphere solid of packing frac-
cross denotes the location of the double real redt=727.69, tion »=0.653. The crosses denote the double real roots located at

7=0.594. o* =66.451,7=0.668 anda* =89.131, 7=0.645.
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This scenario changes at* =727.69 where the quartic in the range 0.652 »<<0.653 as it can be inferred from Figs.

equation has a new double real ropt0.594(Fig. 6). Two 7 @nd 8.

large«* branches develop from this point: the upper branc In summary, we have determined the branches of solu-
. . . . * . ' i}ions for the effective liquid density of a fcc hard-sphere
is an increasing function ok* while the lower branch de-  ¢gjiq in the real space version of the MWDA. These

creases with localization of the hard spheres. This larje- pranches are the real roots of a quartic equation with real
lower branch has been considered in the literafé8] to coefficients which are smooth functions of the order param-
represent the solution of the MWDA for high density hard- eter. For low density solids we have shown that there is a
sphere solids, probably because in these studies this brangRique branch of solutions satisfying the uniform fluid limit,

was assumed to verify all the requirements of the MWDA.2S required by the MWDA. Since the original paper of Den-

From Fig. 6 it is readily seen that the uniform fluid limit does ton and Ashcroft this branch has begn kr_lown to produce
not exist for this branch and therefore it cannot be considereﬁtable or metastable hard-sphere solids with respect to the

. . ard-sphere fluid and to provide an accurate description of
as a solution of the MWDA. Note that the nonexistence Ofthe hard-sphere fluid-solid transition. For high density solids

solutions forz in the MWDA cannot be ascribed to the PY the existence of a range of order parameters with no real
approximation. For instance, adopting the same approximaoots of the quartic equation indicates that, above a threshold
tion for the fluid phase in the GELA, the unique branch ofaverage density of the solid, there is no decreasing branch of
solutions is a continuous function af satisfying the uni- solutions satisfying the uniform fluid limit. Our conclusion is
form fluid limit for low and high density solids. therefore that the MWDA is unable to predict high density
We expect the gap between the double real roots of thBard-sphere crystals.
smalla* and large™ branches to be narrowed as the aver- | would like to thank R. Mariez Herrero and R. Brito for
age density of the solid decreases, indicating the existence @fimulating discussions. This work has been supported by the
a density threshold above which the MWDA is unable toDireccion General de Investigaaio Cientfica y Tecnica
predict hard-sphere solids. This density threshold is locate@@GICYT, Spain (Grant No. PB94-0265
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