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Freezing of hard spheres within the modified weighted density approximation

C. F. Tejero
Facultad de Ciencias Fı´sicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain

~Received 21 October 1996!

The real space version of the modified weighted density approximation is investigated in order to determine
the effective liquid density that is used to represent a face centered cubic hard-sphere solid. It is shown that
above a threshold average density of the solid the theory is unable to predict the existence of the crystal phase.
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PACS number~s!: 64.10.1h, 64.30.1t, 05.70.Ce
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In the density functional theory of freezing@1# the Helm-
holtz free energy of a solid,F@r#, is a unique functional of
the local density,r(r ), which can be split into ideal and
excess contributions,F@r#5F id@r#1Fex@r#. The equilib-
rium local density of the solid is obtained by minimizin
F@r# at constant average density but, since onlyF id@r# is
known exactly as a functional of the local density, a
implementation of density functional theory requires so
explicit approximation forFex@r#. In the modified weighted
density approximation~MWDA ! of Denton and Ashcroft@2#
and in the generalized effective liquid approximati
~GELA! of Lutsko and Baus@3# the excess free energy pe
particle of the solidf ex@r#5Fex@r#/N, with N the number of
particles, is mapped onto that of an effective uniform flu
i.e., f ex@r#5 f ex( r̂). Herer̂[r̂@r# denotes the effective liq
uid density which is used to represent the solid andf ex( r̂) is
the excess free energy per particle of the corresponding
form fluid. Both approximations differ in the way the effe
tive liquid density is found. In the GELAr̂ is the unique
solution of a differential equation@3#, while in the MWDA
r̂ is defined as a doubly weighted average of the local d
sity of the solid with respect to a weight function@2#:

r̂5
1

NE dr r~r !E dr 8r~r 8!w~ ur2r 8u; r̂ !, ~1!

wherew(ur2r 8u; r̂) is the weight function.
To ensure that the MWDA becomes exact in the limit o

uniform systemr(r )→r l , with r l denoting the density o
the uniform system, the weight function must satisfy the n
malization condition

E dr 8w~ ur2r 8u;r l !51, ~2!

where we have taken into account thatr̂→r l when
r(r )→r l .

A unique specification of the weight function is obtain
by requiring that the second functional derivative of the e
cess free energy functional2bFex@r#, with b the inverse
temperature, is, in the uniform fluid limit, the direct correl
tion function of the uniform fluid, yielding

w~ ur u;r l !52
1

2c8~r l !
Fc~ ur u;r l !1

1

V
r lc9~r l !G , ~3!
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whereV is the volume,c(r)5b f ex(r), andc(ur u;r) is the
direct correlation function of the fluid. As usual, the prim
denotes diferentiation with respect to the argument.

Five years ago, Kyrlidis and Brown@4# made a compari-
son between the MWDA and the GELA for the face cente
cubic ~fcc! hard-sphere solid at low densities. They fou
that the MWDA can possess two solutions forr̂. The reason
for this unphysical multiplicity of solutions for the effectiv
liquid density was not investigated by these authors but
terpreted by them as a serious defect of the theory. V
recently Likos and Ashcroft@5# concluded that the solution
of the MWDA, when it exists, is always unique if prope
account is taken of the boundary conditions thatr̂ has to
satisfy for small localizations of the particles in the solid.
particular, they showed that the so-called second branc
solutions of the MWDA must be discarded since, in the u
form fluid limit, the effective liquid packing fraction of this
branch ĥ5pr̂s3/6, with s the hard-sphere diameter, ap
proaches unity. This value is greater than the packing fr
tion at close packing of the fcc crystal (pA2/6.0.7405) and
would therefore correspond to an unphysical fluid~or even
solid! phase since hard spheres cannot completely fill sp
without overlapping. In this paper we apply the real spa
version of the MWDA @6# to a fcc hard-sphere solid an
determine the branches of solutions for the effective liq
density. We investigate low and high density solids, findi
important qualitative differences.

Adopting the Percus-Yevick~PY! approximation to de-
scribe the fluid phase and parametrizing the local density
the solid as a sum of identical normalized Gaussians cent
around the lattice sites, the effective liquid densityĥ in the
real space version of the MWDA@6# is given, by inserting
Eq. ~3! in Eq. ~1!, by one of the solutions of the equation

2ĥ$~12ĥ !213%

~12ĥ !3
5

1

~12ĥ !4
F ~112ĥ !2S02

3

2
ĥ~21ĥ !2S1

1
1

2
ĥ~112ĥ !2S32hĥ$~12ĥ !219%G ,

~4!

whereh5prs3/6, with r the average density of the solid
and (n50,1,3)
3720 © 1997 The American Physical Society
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Sn[Sn~a* ,h!5S a*

2p D 1/2(
j

1

xj
E
0

1

dx xn11

3@e2a* ~x2xj !
2/22e2a* ~x1xj !

2/2#. ~5!

In Eq. ~5! a*5as2 is the localization or order paramete
a being the inverse width of the Gaussians, the sum r
over the Bravais lattice vectors$r j%, andxj[xj (h)5ur j u/s
@7#. As the integrals in Eq.~5! can be performed analytically
the determination ofS0, S1, and S3, for fixed h and a* ,
reduces to the evaluation of three lattice sums. We h
found that, for a fcc crystal, converged sums with a relat
error smaller than 1028 are obtained fora*>0.1 and
0.1<h<0.73 with 300 lattice shells.

Note moreover that, whenĥÞ1, Eq. ~4! can be further
reduced to a quartic equationĥ41a3ĥ

31a2ĥ
21a1ĥ1a0

50 with real coefficients a05S0/2, a152425h
12S023S11S3/4, a2561h12S023S11S3, and a35
232h/223S1/41S3. Here we consider the real roots o

FIG. 1. S0 ~continuous line!, S1 ~dashed line!, andS3 ~dotted
line! @see Eq.~5!# vs the localization parametera* for a fcc hard-
sphere solid of packing fractionh50.5.

FIG. 2. Upper and lower branches of Eq.~4! vs the localization
parametera* for a fcc hard-sphere solid of packing fractio
h50.5.
s

e
e

this quartic equation for two representative cases:h50.5,
corresponding to the low density region already discusse
@2#, andh50.7, i.e., to an average solid density near clo
packing@6,8#. The former case corresponds to a metasta
solid near the first-order fluid-solid transition whereas t
latter is a representative example of a high density solid.

In Fig. 1 we representS0, S1, andS3 for a fcc hard-sphere
solid of packing fractionh50.5 for 0.1<a*<100. It is seen
that the curves are smooth functions ofa* which increase
when decreasing the localization parameter and reach in
uniform fluid limit, a*→0, plateaus given by

S0→8h, S1→6h, S3→4h ~a*→0!. ~6!

Within this range of localization parameters the quartic eq
tion has two real roots which are plotted in Fig. 2. Both t
upper and lower branches are decreasing functions ofa*
approaching, asa*→0, to ĥ→1 and ĥ→h, respectively.
The overall picture encountered in this case is therefore
same as in Fig. 1 in the paper by Kyrlidis and Brown. No

FIG. 3. S0 ~continuous line!, S1 ~dashed line!, andS3 ~dotted
line! @see Eq.~5!# for localization parameters 0.1<a*<100 for a
fcc hard-sphere solid of packing fractionh50.7.

FIG. 4. S0 ~continuous line!, S1 ~dashed line!, andS3 ~dotted
line! @see~5!# for localization parameters 0.1<a*<4000 for a fcc
hard-sphere solid of packing fractionh50.7.
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however, that, asĥ→1, we have to be careful with the sin
gularity of the PY approximation and take instead the u
form fluid limit ~6! in Eq. ~4! to find

2ĥ$~12ĥ !213%

~12ĥ !3
5

1

~12ĥ !4
@2h$~12ĥ !213%~12ĥ !#

~a*→0!, ~7!

with a unique real rootĥ5h. This condition is an essentia
constraint of the MWDA@2#, required by the normalization
of the weight function and pointed out by Likos and Ashcr
@5#, which leads to a unique identification of the tw
branches of solutions of the MWDA. With this identificatio
the lower branch yields a minimum of the solid free ener
at amin* 572.5 corresponding to an effective liquid packin

fraction ĥ50.291@6#.

FIG. 5. Small-a* branches of Eq.~4! vs the localization param
etera* for a fcc hard-sphere solid of packing fractionh50.7. The
cross denotes the location of the double real root:a*533.985

ĥ50.761.

FIG. 6. Large-a* branches of Eq.~4! vs the localization param
etera* for a fcc hard-sphere solid of packing fractionh50.7. The
cross denotes the location of the double real root:a*5727.69,

ĥ50.594.
-

t

y

In Figs. 3 and 4 we representS0, S1, andS3 for a fcc
hard-sphere solid of packing fractionh50.7 for
0.1<a*<4000. Note that the curves are again smooth fu
tions of the order parameter approaching the limit~6! for
small-a* values~Fig. 3!. By increasinga* the curves first
increase, then reach a maximum to finally decrease at v
large localizations~Fig. 4!. The real roots of the quartic
equation are shown in Figs. 5 and 6. For small-a* values
there are two branches which converge, asa*→0, to
ĥ→1 andĥ→0.7, respectively~Fig. 5!. As explained above
the upper branch must be discarded by taking proper acc
of the uniform fluid limit ~7!. An important difference with
respect to the low density case is that now the lower bra
increases witha* , the upper and lower branches approac
ing each other when increasing localization.
a*533.985 the quartic equation has a double real r
ĥ50.761 and for larger localizations the roots are all ima
nary.

FIG. 7. Upper and lower branches of Eq.~4! vs the localization
parametera* for a fcc hard-sphere solid of packing fractio
h50.652.

FIG. 8. Small-a* and large-a* branches of Eq.~4! vs the lo-
calization parametera* for a fcc hard-sphere solid of packing frac
tion h50.653. The crosses denote the double real roots locate

a*566.451,ĥ50.668 anda*589.131,ĥ50.645.
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This scenario changes ata*5727.69 where the quartic

equation has a new double real rootĥ50.594~Fig. 6!. Two
large-a* branches develop from this point: the upper bran
is an increasing function ofa* while the lower branch de
creases with localization of the hard spheres. This largea*
lower branch has been considered in the literature@6,8# to
represent the solution of the MWDA for high density har
sphere solids, probably because in these studies this br
was assumed to verify all the requirements of the MWD
From Fig. 6 it is readily seen that the uniform fluid limit doe
not exist for this branch and therefore it cannot be conside
as a solution of the MWDA. Note that the nonexistence

solutions forĥ in the MWDA cannot be ascribed to the P
approximation. For instance, adopting the same approxi
tion for the fluid phase in the GELA, the unique branch
solutions is a continuous function ofa* satisfying the uni-
form fluid limit for low and high density solids.

We expect the gap between the double real roots of
small-a* and large-a* branches to be narrowed as the av
age density of the solid decreases, indicating the existenc
a density threshold above which the MWDA is unable
predict hard-sphere solids. This density threshold is loca
t t
na
h

ch
.

d
f

a-
f
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-
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d

in the range 0.652,h,0.653 as it can be inferred from Figs
7 and 8.

In summary, we have determined the branches of so
tions for the effective liquid density of a fcc hard-sphe
solid in the real space version of the MWDA. The
branches are the real roots of a quartic equation with
coefficients which are smooth functions of the order para
eter. For low density solids we have shown that there i
unique branch of solutions satisfying the uniform fluid lim
as required by the MWDA. Since the original paper of De
ton and Ashcroft this branch has been known to prod
stable or metastable hard-sphere solids with respect to
hard-sphere fluid and to provide an accurate description
the hard-sphere fluid-solid transition. For high density sol
the existence of a range of order parameters with no
roots of the quartic equation indicates that, above a thresh
average density of the solid, there is no decreasing branc
solutions satisfying the uniform fluid limit. Our conclusion
therefore that the MWDA is unable to predict high dens
hard-sphere crystals.
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